Search

[APIC-IST 2022]

모델: Random Forest Regressor, Catboost(시간 여유 될 때)
XAI 기법: LIME, SHAP
실험 절차:
1.
Data preparation → Training dataset
2.
Train model and apply XAI techniques → LIME feature importance / SHAP values
3.
Summarize XAI results → Ranking results of features
4.
Experiments
a.
Feature selection (recursive elimination)
b.
Performance evaluation for feature subset (training time, loss)
코드 구성:
data_preparation.py
train_and_xai.py
performance_evaluation.py

References

1.
강의 02 RandomForestRegressor 모델, 토닥토닥 파이썬 - 머신러닝 (link)
Random Forest Regressor 모델 매개변수 설정 방법
2.
Model persistence, Scikit-learn API Document (link)
모델 저장 및 불러오기 방법
3.
marcotcr, LIME Tutorial, GitHub (link)
4.
애뚱, (Explainable AI) SHAP 그래프 해석하기! feat. 실전 코드, 티스토리 (link)
SHAP 코드 예시
5.
Explain Any Models with the SHAP Values — Use the KernelExplainer, Towards Data Science (link)
Random Forest Regressor + SHAP 코드, impurity